2,545 research outputs found

    Automatic post-processing for tolerance inspection of digitized parts made by injection moulding

    Get PDF
    This paper presents the advancements of an automatic segmentation procedure based on the concept of Hierarchical Space Partitioning. It is aimed at tolerance inspection of electromechanical parts produced by injection moulding and acquired by laser scanning. After a general overview of the procedure, its application for recognising cylindrical surfaces is presented and discussed through a specific industrial test case

    Mechanical testing of metallic foams for 3d model and simulation of cell distribution effects

    Get PDF
    Cellular materials have a bulk matrix with a larger number of voids named also cells. Metallic foams made by powder technology represent stochastic closed cells. The related inhomogeneity leads to a scattering of results both in terms of stress–strain curves and maximum strength. Scattering is attributed to relative density variations and local cell discontinuities and it is confirmed also in case of dynamic loading. Finite element simulations through geometrical models that are able to capture the void morphology (named “mesoscale models”), confirm these results and some efforts have been already done to quantify the relationship between shape irregularities and mechanical behavior. The aim of this paper is to present the dynamic characterization of an AA7075 closed cell material and to calibrate its mesoscale finite element model according to the related cell shape distribution. Specimens have been derived from a small ingot (45x45x100 mm) divided along sections so that morphological analysis and experimental tests have been carried out. Specimens extracted from a half of the ingot have been used for dynamic compression tests by means of a split Hopkinson bar, meanwhile specimens extracted from the other half of the ingot have been dissected for porosity distribution analyses carried out by means of image analysis. Stress-strain curves obtained from the mechanical tests have been discussed in terms of strain rate and statistical descriptors of the porosity. Successively a 3D-model of the specimen has been generated starting from the Voronoi algorithm, assigning as input the above-mentioned statistical distribution of the porosity. Due to the peculiarity of the cell morphology (e.g. single larger cells), stress-strain localization has been demonstrated as one of the reasons of the scattering found during the experiments. A material model, to reproduce the investigated foam mechanical behavior, has been calibrated. Despite the difference among experiments the material model is able to reproduce all of them. Difference between the model coefficients quantifies roughly the difference due to the local geometry of the cells

    Computer aided inspection procedures to support smart manufacturing of injection moulded components

    Get PDF
    This work presents Reverse Engineering and Computer Aided technologies to improve the inspection of injection moulded electro-mechanical parts. Through a strong integration and automation of these methods, tolerance analysis, acquisition tool-path optimization and data management are performed. The core of the procedure concerns the automation of the data measure originally developed through voxel-based segmentation. This paper discusses the overall framework and its integration made according to Smart Manufacturing requirements. The experimental set-up, now in operative conditions at ABB SACE, is composed of a laser scanner installed on a CMM machine able to measure components with lengths in the range of 5Ă·250 mm, (b) a tool path optimization procedure and (c) a data management both developed as CAD-based applications

    Finite element model set-up of colorectal tissue for analyzing surgical scenarios

    Get PDF
    Finite Element Analysis (FEA) has gained an extensive application in the medical field, such as soft tissues simulations. In particular, colorectal simulations can be used to understand the interaction with the surrounding tissues, or with instruments used in surgical procedures. Although several works have been introduced considering small displacements, as a result of the forces exerted on adjacent tissues, FEA applied to colorectal surgical scenarios is still a challenge. Therefore, this work aims to provide a sensitivity analysis on three geometric models, taking in mind different bioengineering tasks. In this way, a set of simulations has been performed using three mechanical models named Linear Elastic, Hyper-Elastic with a Mooney-Rivlin material model, and Hyper-Elastic with a YEOH material model

    Effect of wall microstructure and morphometric parameters on the crush behaviour of Al alloy foams

    Get PDF
    Three different aluminium foams, manufactured by compact powder technology starting from 7075, 6061 and AlSi7 alloys were studied by performing microstructural and morphometric analyses, with the aim of explaining their different behaviour during axial crushing. Void distribution coupled with material microstructure justifies the behaviour of load-displacement curves obtained during axial crushing of the foams. The results show that 7075 alloy seems to be the material having the best behaviour during crushing, at least when the foam is removed of the external walls. Despite that outer skin presence coupled with the intrinsic brittle behaviour of this alloy may cause instability, if it is used to fill hollow components like crashboxes. During deformation process 6061 and AlSi7 alloys that are more ductile, give in and maintain contact adapting to the encasement deformation. (c) 2007 Elsevier B.V. All rights reserved

    A generative design method for cultural heritage applications: design of supporting structures for artefacts

    Get PDF
    This paper presents a Generative Design Method (GDM) for highly customised Cultural Heritage applications concerning the exhibition and conservation of pottery. As a fundamental requirement, archaeological finds must be preserved in their structural integrity. Additionally, when present, the exposition supports must be aesthetically pleasant meaning that they must be non-invasive in the field of view of the observer. Furthermore, each artefact presents a unique geometry, hence its supporting structure must be designed accordingly. The proposed GDM considers these requirements, adopting a synergy of CAD, CAE, and optimisation tools. It is developed through two phases. The first phase, P1, concerns with the structural integrity of the fragment. In this phase, a Parametric Modelling approach is chosen for its ease of use both in the Finite Element Analysis evaluations of artefacts and in the design and optimisations of feasible supporting structures. The output of the phase P1 is the optimised configuration of the functional elements of the support ('Ci') which are the interface region between the support itself and the fragment of pottery. They represent the input of the second phase, P2, that aims to generate lightweight concepts for the complete supporting structure considering the optimal 'Ci' configuration. During this phase, an aesthetics criterion (related to the minimisation of the support's visibility) is also considered to achieve non-invasive supporting structures. Doing so, the GDM provides informed decisions in the early stages of the design activities with a simulation driven approach oriented to manufacturing. In this way, users are able to focus on design requirements since the concept's variants are generated by means of an optimised configuration of standardised components ('Ci') and obstacle geometries

    Synthesis and Evaluation of Saccharide-Based Aliphatic and Aromatic Esters as Antimicrobial and Antibiofilm Agents

    Get PDF
    A small library of sugar-based (i.e., glucose, mannose and lactose) monoesters containing hydrophobic aliphatic or aromatic tails were synthesized and tested. The antimicrobial activity of the compounds against a target panel of Gram-positive, Gram-negative and fungi was assessed. Based on this preliminary screening, the antibiofilm activity of the most promising molecules was evaluated at different development times of selected food-borne pathogens (E. coli, L. monocytogenes, S. aureus, S. enteritidis). The antibiofilm activity during biofilm formation resulted in the following: mannose C10 > lactose biphenylacetate > glucose C10 > lactose C10. Among them, mannose C10 and lactose biphenylacetate showed an inhibition for E. coli 97% and 92%, respectively. At MICs values, no toxicity was observed on Caco-2 cell line for all the examined compounds. Overall, based on these results, all the sugar-based monoesters showed an interesting profile as safe antimicrobial agents. In particular, mannose C10 and lactose biphenylacetate are the most promising as possible biocompatible and safe preservatives for pharmaceutical and food applications

    Simulation based topology optimization assessment with manufacturing constraints

    Get PDF
    In Automotive and Aerospace industries, Topology Optimization (TO) is being used for the last few decades to produce lightweight structures. On the other hand, TO produces very complex geometrical features (i.e. irregular shape and hidden cavities along the thickness) that is sometimes difficult to be manufactured even with Additive Manufacturing (AM) and Casting techniques. In this paper suitable design and manufacturing constraint (MC) are applied during TO process that act as an Optimization Tool (OT) and improves geometrical features of the mechanical structures for easy manufacturing. Three mechanical structures with different geometries and boundary conditions have been considered for analysis purpose. Topology Optimization based on linear static analysis has been performed using OptiStruct (HyperWorks) solver. Finally, results of analysis conclude that the proposed OT produces lightweight structures with very simple geometries that can easily be manufactured with the help of AM or Casting techniques

    Digital design of medical replicas via desktop systems: shape evaluation of colon parts

    Get PDF
    In this paper, we aim at providing results concerning the application of desktop systems for rapid prototyping of medical replicas that involve complex shapes, as, for example, folds of a colon. Medical replicas may assist preoperative planning or tutoring in surgery to better understand the interaction among pathology and organs. Major goals of the paper concern with guiding the digital design workflow of the replicas and understanding their final performance, according to the requirements asked by the medics (shape accuracy, capability of seeing both inner and outer details, and support and possible interfacing with other organs). In particular, after the analysis of these requirements, we apply digital design for colon replicas, adopting two desktop systems. ,e experimental results confirm that the proposed preprocessing strategy is able to conduct to the manufacturing of colon replicas divided in self-supporting segments, minimizing the supports during printing. ,is allows also to reach an acceptable level of final quality, according to the request of having a 3D presurgery overview of the problems. ,ese replicas are compared through reverse engineering acquisitions made by a structured-light system, to assess the achieved shape and dimensional accuracy. Final results demonstrate that low-cost desktop systems, coupled with proper strategy of preprocessing, may have shape deviation in the range of ±1 mm, good for physical manipulations during medical diagnosis and explanation

    Development of a multifunctional panel for aerospace use through SLM additive manufacturing

    Get PDF
    Lattice materials can overcome the need of light and stiff structures in the aerospace industry. The wing leading edge is one of the most critical parts for both on-board subsystem and structure features: it must withstand to the aerodynamic loads and bird-strike, integrating also the anti-ice system functions. Nowadays, this part is made by different components bonded together such as external skin, internal passageways, and feeding tubes. In the present work, a single-piece multifunctional panel made by additive manufacturing will be developed. Optimal design and manufacturing are discussed according to technological constraints, aeronautical performances and sustainability
    • …
    corecore